Sustainable Marine's 'Ultra-durable' Tidal Turbine Rotors Can Stay in the Field for 20 Years

Credit: Sustainable Marine
Credit: Sustainable Marine

Scottish tidal energy technology company Sustainable Marine said Wednesday its new turbine rotors have proven they can survive for two decades in the field, following rigorous tests at a marine energy center in Ireland.

The company teamed up with the MaREI Centre at the National University of Ireland, Galway (NUI Galway), through German engineering partner SCHOTTEL Hydro, to test its new 'ultra-durable' turbine rotors.

The project was delivered under Marinet2 – Horizon 2020 program supporting offshore renewable energy testing across the EU.

It took place within the Ryan Institute and School of Engineering at the National University of Ireland Galway, which houses a 375m2 Structures Research Laboratory - the largest of its kind in Ireland. 

Sustainable Marine’s floating tidal energy system uses a common drive train and two different rotor diameters, measuring 6.3m and 4m, to suit requirements at different resource sites.

Having completed extensive tests on the 6.3m rotors at NUI Galway, the company returned to the Irish facility to assess the performance of its shorter 4m rotors, specifically designed for stronger resource sites.

According to Sustainable Marine, the laboratory carried out ‘accelerated lifetime testing’ subjecting the rotors to conditions equivalent to 20 years of operation in the field, in just a matter of weeks. It covered a broad range of parameters including stress, strain and vibration.

Ralf Starzmann, Vice President of Business Development at Sustainable Marine said:"This international collaboration, through our German engineering partner SCHOTTEL Hydro, provides a firm indication of our ambitions to continue raising the bar and advance the field of tidal turbine technology. In order to push the boundaries, it is essential that we challenge our solutions at leading facilities that can push the limits of our technology.

"Accelerated lifetime testing is an essential process which allows us to rapidly speed up normal conditions, to better understand how structures will react over time. Our new 4m rotor blade has proven to be ‘ultra-durable’, providing full confidence in the design and structural integrity. Reliability is a key factor in tidal turbine development, particularly as we are now moving towards our first commercial projects.”

The complete analysis in the MaREI Centre at NUI Galway tested rotor behavior under fatigue loading, reviewing aspects such as torsional deflection and overall structural performance. Further in-house testing carried out by SCHOTTEL Hydro involved ultimate loading and testing the integrity of the blade until failure, Sustainable Marine said.



Floating out of Sustainable Marine's tidal energy array in Nova Scotia, Canada earlier this year - Credit: Sustainable MarineWorth noting, sustainable Marine is currently preparing to deliver the world’s first floating tidal energy array in the Bay of Fundy, Nova Scotia.

Earlier this year, it launched its new 420kW PLAT-I 6.40 floating tidal energy platform, featuring the new 4m rotors, which is now undergoing commissioning and testing in Grand Passage.

The company's turbine design consists of a fixed-pitch rotor engineered from carbon-fiber, in order to flex and pitch in overload conditions. This ‘passive-adaptive’ quality helps reduce structural loads on the turbines so that smaller more cost-effective components can be used, the company said.

Prof Jamie Goggins, Director of Research & Innovation, at NUI Galway’s School of Engineering, said: “Due to the nature of shorter blades with significantly higher loads, compared to wind blades, a specialist structural testing facility for tidal turbine blades was required to support the tidal energy industry. 

"We are fortunate to have had great investment from the European Commission, through Horizon 2020, and the Irish Government, through Science Foundation Ireland (SFI) and Sustainable Energy Authority of Ireland (SEAI), to support us in developing our world-leading tidal turbine blade test facility. We are delighted to be able to collaborate with SCHOTTEL Hydro through the H2020 Marinet2 project to de-risk their full-scale blades to help the sector reach commercial viability. These projects also help train the next generation of energy engineers. To date, over 100 engineers have worked within our group, as either staff or students, and have gone on to work with some of the world’s leading companies.”

  

Current News

TenneT Hires Nexans for LanWin 2 Export Cables Scope

TenneT Hires Nexans for LanWin

TGS Secures 4D Streamer Campaign Offshore Norway

TGS Secures 4D Streamer Campai

Trident Energy Strengthens Oil and Gas Portfolio in Congo

Trident Energy Strengthens Oil

Norway Offers 53 New Production Licenses

Norway Offers 53 New Productio

Subscribe for OE Digital E‑News

Offshore Engineer Magazine